Baltic-C: Modeling and experimental approaches to unravel the Baltic Sea carbon(CO₂) cycle and its response to anthropogenic changes

B. Schneider¹, <u>A. Omstedt²</u>, C. Humborg³, J. Pempkowiak⁴, M. Perttilä⁵, A. Rutgersson⁶, and B. Smith⁷

¹Baltic Sea Research Institute, Germany;

²Department of Earth Sciences, University of Gothenburg, Sweden;

³Baltic Nest Institute, Stockholm University, Sweden;

⁴Institute of Oceanology, Polish Academy of Sciences, Poland;

⁵Finnish Meteorological Institute, Finland;

⁶Department of Earth Sciences, Uppsala University, Sweden;

⁷Department of Physical Geography and Ecosystem Science, Lund University, Sweden

Baltic-C

Building predictive capability regarding the Baltic Sea organic/inorganic carbon and oxygen systems

Baltic-C Kick off meeting Gothenburg November 2008

Motivation:

1.) Eutrophication: "an increase in the rate of supply of organic matter to an ecosystem" (Nixon, 1995)

2.) Acidification

Nixon, S.W., Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199 -219 (1995)

Structure of Baltic-C

The Baltic Sea carbon cycle: present state and future development.

External forcing, affected by climate change and anthropogenic activities.

Biogeochemical forcing: Atmosphere

A. Rutgersson, B. Claremar, M. Norman, Erik Sahlee

Physically based parameterisation of the gas exchange transfer velocity including the impact of convection:

Gas exchange resistances:

Reconstruction of the atmospheric deposition of nutrients and acidic substances 1960 to 2006 **Baltic Sea drainage basin:**

1980

1990

2000

1970

Biogeochemical forcing: Catchment

Organic carbon: B. Smith, G. Schurgers Inorganic carbon: C. Humborg, C.-M. Mörth, T. Wällstedt

△ DOC production (1996-2005)–(1976-1988) (1996-2005)-(1976-1988) **LPJ-GUESS LPJ-GUESS** The model system: gC m⁻² yr⁻¹ mgC l⁻¹ climate atmospheric CO₂ acid deposition ... LPJ-GUESS 0.5 0.5 vegetation -0.5 -0.5 DOC 2 -2 CSIM

-6

DOC, DIC alkalinity

∆ runoff **DOC** concentration

-6

<u>The Baltic Sea carbon cycle – Experimental approach:</u>

A. The Baltic Sea CO₂ system (B. Schneider, A. Löffler)

- **B.** The Baltic Sea carbon budget
- (J. Pempkowiak, K. Kulinski, A. Maciejewska, A. Szczepanska, M. Perttilä)

Fluxes of inorganic carbon (red) and organic carbon (green) are given in kt/yr and the inventories (encircled) refer to kt.

The Baltic Sea carbon/oxygen cycle – Model simulations:

Two scenario combinations:

1.) CO₂ scenario A2 (850 ppm); nutrient inputs according to business as usual (red);

2.) CO₂ scenario B1 (550 ppm); nutrient inputs according to the Baltic Sea Action Plan (green);

Oxygen:

Nutrient inputs according to the Baltic Sea Action Plan will stop the extension of hypoxic area in the Baltic Proper!

Decrease in O₂ concentrations until the end of the 21st century

Baltic Sea Action Plan:

Business as usual:

Acidification:

The change in pH is mainly controlled by the increase of atmospheric CO₂, climate change and changes in input from land (nutrients) have no clear effect.

Decrease in pH until the end of the 21st century

Atmospheric CO₂: 550 ppm:

Atmospheric CO₂: 850 ppm: